Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L111-L123, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084409

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-ß (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes the transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel anoctamin-1 (ANO1) in human lung fibroblasts (HLFs) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle α-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1, and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate profibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLFs results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that 1) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and 2) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein but independent of WNK1 kinase activity.NEW & NOTEWORTHY This study describes a novel mechanism of differentiation of human lung fibroblasts (HLFs) to myofibroblasts: the key process in the pathogenesis of pulmonary fibrosis. Transforming growth factor-ß (TGF-ß) drives the expression of calcium-activated chloride channel anoctmin-1 (ANO1) leading to an increase in intracellular levels of chloride. The latter recruits chloride-sensitive with-no-lysine (K) kinase (WNK1) to activate profibrotic RhoA and AKT signaling pathways, possibly through activation of mammalian target of rapamycin complex-2 (mTORC2), altogether promoting myofibroblast differentiation.


Asunto(s)
Fibrosis Pulmonar Idiopática , Miofibroblastos , Humanos , Anoctamina-1/metabolismo , Diferenciación Celular , Cloruros/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Miofibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Factores de Crecimiento Transformadores/farmacología
2.
bioRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37333255

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-beta (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel Anoctamin-1 (ANO1) in human lung fibroblasts (HLF) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle alpha-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1 and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate pro-fibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLF results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that (i) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and (ii) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein, but independent of WNK1 kinase activity.

3.
bioRxiv ; 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36993497

RESUMEN

RATIONALE: Cardiac microvascular leakage and inflammation are triggered during myocardial infarction (MI) and contribute to heart failure. Hypoxia-inducible factor 2α (Hif2α) is highly expressed in endothelial cells (ECs) and rapidly activated by myocardial ischemia, but whether it has a role in endothelial barrier function during MI is unclear. OBJECTIVE: To test our hypothesis that the expression of Hif2α and its binding partner aryl hydrocarbon nuclear translocator (ARNT) in ECs regulate cardiac microvascular permeability in infarcted hearts. METHODS AND RESULTS: Experiments were conducted with mice carrying an inducible EC-specific Hif2α-knockout (ecHif2α-/-) mutation, with mouse cardiac microvascular endothelial cells (CMVECs) isolated from the hearts of ecHif2α-/- mice after the mutation was induced, and with human CMVECs and umbilical-vein endothelial cells transfected with ecHif2α siRNA. After MI induction, echocardiographic assessments of cardiac function were significantly lower, while measures of cardiac microvascular leakage (Evans blue assay), plasma IL6 levels, and cardiac neutrophil accumulation and fibrosis (histology) were significantly greater, in ecHif2α-/- mice than in control mice, and RNA-sequencing analysis of heart tissues from both groups indicated that the expression of genes involved in vascular permeability and collagen synthesis was enriched in ecHif2α-/- hearts. In cultured ECs, ecHif2α deficiency was associated with declines in endothelial barrier function (electrical cell impedance assay) and the reduced abundance of tight-junction proteins, as well as an increase in the expression of inflammatory markers, all of which were largely reversed by the overexpression of ARNT. We also found that ARNT, but not Hif2α, binds directly to the IL6 promoter and suppresses IL6 expression. CONCLUSIONS: EC-specific deficiencies in Hif2α expression significantly increase cardiac microvascular permeability, promote inflammation, and reduce cardiac function in infarcted mouse hearts, and ARNT overexpression can reverse the upregulation of inflammatory genes and restore endothelial-barrier function in Hif2α-deficient ECs.

4.
Front Cell Dev Biol ; 9: 691801, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179020

RESUMEN

Hypoxia-inducible factors (HIFs) are the master regulators of angiogenesis, a process that is impaired in patients with diabetes mellitus (DM). The transcription factor aryl hydrocarbon receptor nuclear translocator (ARNT, also known as HIF1ß) has been implicated in the development and progression of diabetes. Angiogenesis is driven primarily by endothelial cells (ECs), but both global and EC-specific loss of ARNT-cause are associated with embryonic lethality. Thus, we conducted experiments in a line of mice carrying an inducible, EC-specific ARNT-knockout mutation (Arnt Δ EC, ERT2) to determine whether aberrations in ARNT expression might contribute to the vascular deficiencies associated with diabetes. Mice were first fed with a high-fat diet to induce diabetes. Arnt Δ EC, ERT2 mice were then adminstrated with oral tamoxifen to disrupt Arnt and peripheral angiogenesis was evaluated by using laser-Doppler perfusion imaging to monitor blood flow after hindlimb ischemia. The Arnt Δ EC, ERT2 mice had impaired blood flow recovery under both non-diabetic and diabetic conditions, but the degree of impairment was greater in diabetic animals. In addition, siRNA-mediated knockdown of ARNT activity reduced measurements of tube formation, and cell viability in human umbilical vein endothelial cells (HUVECs) cultured under high-glucose conditions. The Arnt Δ EC, ERT2 mutation also reduced measures of cell viability, while increasing the production of reactive oxygen species (ROS) in microvascular endothelial cells (MVECs) isolated from mouse skeletal muscle, and the viability of Arnt Δ EC, ERT2 MVECs under high-glucose concentrations increased when the cells were treated with an ROS inhibitor. Collectively, these observations suggest that declines in endothelial ARNT expression contribute to the suppressed angiogenic phenotype in diabetic mice, and that the cytoprotective effect of ARNT expression in ECs is at least partially mediated by declines in ROS production.

5.
Oxid Med Cell Longev ; 2021: 6655122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859779

RESUMEN

BACKGROUND: The blood-brain barrier (BBB) regulates the exchange of molecules between the brain and peripheral blood and is composed primarily of microvascular endothelial cells (BMVECs), which form the lining of cerebral blood vessels and are linked via tight junctions (TJs). The BBB is regulated by components of the extracellular matrix (ECM), and matrix metalloproteinase 3 (MMP3) remodels the ECM's basal lamina, which forms part of the BBB. Oxidative stress is implicated in activation of MMPs and impaired BBB. Thus, we investigated whether MMP3 modulates BBB permeability. METHODS: Experiments included in vivo assessments of isoflurane anesthesia and dye extravasation from brain in wild-type (WT) and MMP3-deficient (MMP3-KO) mice, as well as in vitro assessments of the integrity of monolayers of WT and MMP3-KO BMVECs and the expression of junction proteins. RESULTS: Compared to WT mice, measurements of isoflurane usage and anesthesia induction time were higher in MMP3-KO mice and lower in WT that had been treated with MMP3 (WT+MMP3), while anesthesia emergence times were shorter in MMP3-KO mice and longer in WT+MMP3 mice than in WT. Extravasation of systemically administered dyes was also lower in MMP3-KO mouse brains and higher in WT+MMP3 mouse brains, than in the brains of WT mice. The results from both TEER and Transwell assays indicated that MMP3 deficiency (or inhibition) increased, while MMP3 upregulation reduced barrier integrity in either BMVEC or the coculture. MMP3 deficiency also increased the abundance of TJs and VE-cadherin proteins in BMVECs, and the protein abundance declined when MMP3 activity was upregulated in BMVECs, but not when the cells were treated with an inhibitor of extracellular signal related-kinase (ERK). CONCLUSION: MMP3 increases BBB permeability following the administration of isoflurane by upregulating the ERK signaling pathway, which subsequently reduces TJ and VE-cadherin proteins in BMVECs.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Sistema de Señalización de MAP Quinasas , Metaloproteinasa 3 de la Matriz/metabolismo , Animales , Barrera Hematoencefálica/enzimología , Encéfalo/irrigación sanguínea , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Isoflurano/farmacocinética , Isoflurano/farmacología , Metaloproteinasa 3 de la Matriz/deficiencia , Metaloproteinasa 3 de la Matriz/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Recombinantes/farmacología , Proteínas de Uniones Estrechas/metabolismo
6.
J Biol Chem ; 294(10): 3369-3384, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30622143

RESUMEN

Staphylococcus aureus is a major etiological agent of sepsis and induces endothelial cell (EC) barrier dysfunction and inflammation, two major hallmarks of acute lung injury. However, the molecular mechanisms of bacterial pathogen-induced EC barrier disruption are incompletely understood. Here, we investigated the role of microtubules (MT) in the mechanisms of EC barrier compromise caused by heat-killed S. aureus (HKSA). Using a customized monolayer permeability assay in human pulmonary EC and MT fractionation, we observed that HKSA-induced barrier disruption is accompanied by MT destabilization and increased histone deacetylase-6 (HDAC6) activity resulting from elevated reactive oxygen species (ROS) production. Molecular or pharmacological HDAC6 inhibition rescued barrier function in HKSA-challenged vascular endothelium. The HKSA-induced EC permeability was associated with impaired MT-mediated delivery of cytoplasmic linker-associated protein 2 (CLASP2) to the cell periphery, limiting its interaction with adherens junction proteins. HKSA-induced EC barrier dysfunction was also associated with increased Rho GTPase activity via activation of MT-bound Rho-specific guanine nucleotide exchange factor-H1 (GEF-H1) and was abolished by HDAC6 down-regulation. HKSA activated the NF-κB proinflammatory pathway and increased the expression of intercellular and vascular cell adhesion molecules in EC, an effect that was also HDAC6-dependent and mediated, at least in part, by a GEF-H1/Rho-dependent mechanism. Of note, HDAC6 knockout mice or HDAC6 inhibitor-treated WT mice were partially protected from vascular leakage and inflammation caused by both HKSA or methicillin-resistant S. aureus (MRSA). Our results indicate that S. aureus-induced, ROS-dependent up-regulation of HDAC6 activity destabilizes MT and thereby activates the GEF-H1/Rho pathway, increasing both EC permeability and inflammation.


Asunto(s)
Células Endoteliales/metabolismo , Microtúbulos/metabolismo , Staphylococcus aureus/fisiología , Células Endoteliales/microbiología , Histona Desacetilasa 6/metabolismo , Calor , Humanos , Inflamación/microbiología , Viabilidad Microbiana , Oxidación-Reducción , Permeabilidad , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteínas de Unión al GTP rho/metabolismo
7.
Cell Signal ; 53: 246-255, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30339829

RESUMEN

Exposure to particulate matter (PM) associated with air pollution remains a major public health concern, as it has been linked to significant increase in cardiopulmonary morbidity and mortality. Lung endothelial cell (EC) dysfunction is one of the hallmarks of cardiovascular events of lung exposure to PM. However, the role of PM in acute lung injury (ALI) exacerbation and delayed recovery remains incompletely understood. This study tested a hypothesis that PM augments lung injury and EC barrier dysfunction via microtubule-dependent mechanisms. Our data demonstrate that in pulmonary EC PM caused time- and dose-dependent remodeling of actin cytoskeleton and considerable destabilization of the microtubule (MT) network. These events led to the weakening of cell junctions and formation of actin stress fibers, resulting in disruption of lung EC monolayer and increased permeability. PM also caused ROS-dependent activation of MT-specific deacetylase, HDAC6. Suppression of HDAC6 activity by pharmacological inhibitors or siRNA-based depletion of HDAC6 abolished PM-induced EC permeability increase, which was accompanied by reduced activation of stress kinase signaling, inhibition of Rho cascade, decreased IL-6 production and suppressed activation of its downstream target STAT3. Pretreatment of pulmonary EC with IL-6 inhibitor led to inhibition of STAT3 activity and decreased PM-induced hyper-permeability. Because one of the major activators of Rho-GTPase, GEFH1, is localized on the MT, we examined its involvement in PM-caused EC barrier compromise. Inhibition of GEF-H1 activation significantly attenuated PM-induced permeability increase. Moreover, combined inhibition of IL-6 and GEF-H1 signaling exhibited additive protective effect. Taken together, these results demonstrate a critical involvement of MT-associated signaling in the PM-induced exacerbation of lung EC barrier compromise and inflammatory response.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Inflamación/etiología , Pulmón/patología , Microtúbulos/patología , Material Particulado/efectos adversos , Actinas/metabolismo , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Permeabilidad Capilar , Línea Celular , Activación Enzimática , Histona Desacetilasa 6/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Microtúbulos/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 313(4): L710-L721, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28663336

RESUMEN

Prostaglandins (PG), the products of cyclooxygenase-mediated conversion of arachidonic acid, become upregulated in many situations including allergic response, inflammation, and injury, and exhibit a variety of biological activities. Previous studies described barrier-enhancing and anti-inflammatory effects of PGE2 and PGI2 on vascular endothelial cells (EC). Yet, the effects of other PG members on EC barrier and inflammatory activation have not been systematically analyzed. This study compared effects of PGE2, PGI2, PGF2α, PGA2, PGJ2, and PGD2 on human pulmonary EC. EC permeability was assessed by measurements of transendothelial electrical resistance and cell monolayer permeability for FITC-labeled tracer. Anti-inflammatory effects of PGs were evaluated by analysis of expression of adhesion molecule ICAM1 and secretion of soluble ICAM1 and cytokines by EC. PGE2, PGI2, and PGA2 exhibited the most potent barrier-enhancing effects and most efficient attenuation of thrombin-induced EC permeability and contractile response, whereas PGI2 effectively suppressed thrombin-induced permeability but was less efficient in the attenuation of prolonged EC hyperpermeability caused by interleukin-6 or bacterial wall lipopolysaccharide, LPS. PGD2 showed a modest protective effect on the EC inflammatory response, whereas PGF2α and PGJ2 were without effect on agonist-induced EC barrier dysfunction. In vivo, PGE2, PGI2, and PGA2 attenuated LPS-induced lung inflammation, whereas PGF2α and PGJ2 were without effect. Interestingly, PGD2 exhibited a protective effect in the in vivo model of LPS-induced lung injury. This study provides a comprehensive analysis of barrier-protective and anti-inflammatory effects of different prostaglandins on lung EC in vitro and in vivo and identifies PGE2, PGI2, and PGA2 as prostaglandins with the most potent protective properties.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Inflamación/tratamiento farmacológico , Lesión Pulmonar/tratamiento farmacológico , Prostaglandinas/farmacología , Animales , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Hemostáticos/efectos adversos , Humanos , Inflamación/inducido químicamente , Inflamación/patología , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/efectos adversos , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Ratones , Trombina/efectos adversos
9.
Nat Commun ; 6: 6574, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25762200

RESUMEN

Activation of the NLRP3 inflammasome and subsequent maturation of IL-1ß have been implicated in acute lung injury (ALI), resulting in inflammation and fibrosis. We investigated the role of vimentin, a type III intermediate filament, in this process using three well-characterized murine models of ALI known to require NLRP3 inflammasome activation. We demonstrate that central pathophysiologic events in ALI (inflammation, IL-1ß levels, endothelial and alveolar epithelial barrier permeability, remodelling and fibrosis) are attenuated in the lungs of Vim(-/-) mice challenged with LPS, bleomycin and asbestos. Bone marrow chimeric mice lacking vimentin have reduced IL-1ß levels and attenuated lung injury and fibrosis following bleomycin exposure. Furthermore, decreased active caspase-1 and IL-1ß levels are observed in vitro in Vim(-/-) and vimentin-knockdown macrophages. Importantly, we show direct protein-protein interaction between NLRP3 and vimentin. This study provides insights into lung inflammation and fibrosis and suggests that vimentin may be a key regulator of the NLRP3 inflammasome.


Asunto(s)
Proteínas Portadoras/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Vimentina/metabolismo , Lesión Pulmonar Aguda/metabolismo , Animales , Bleomicina/química , Células de la Médula Ósea/citología , Líquido del Lavado Bronquioalveolar , Línea Celular , Proliferación Celular , Femenino , Fibrosis , Interleucina-1beta/metabolismo , Pulmón/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , Microscopía de Fuerza Atómica , Proteína con Dominio Pirina 3 de la Familia NLR , Mapeo de Interacción de Proteínas
10.
FASEB J ; 25(11): 3873-83, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21803859

RESUMEN

The physiological and pathophysiological implications of the expression of vimentin, a type III intermediate filament protein, in alveolar epithelial cells (AECs) are unknown. We provide data demonstrating that vimentin is regulated by TGFß1, a major cytokine released in response to acute lung injury and that vimentin is required for wound repair and remodeling of the alveolar epithelium. Quantitative real-time PCR shows a 16-fold induction of vimentin mRNA in TGFß1-treated transformed AECs. Luciferase assays identify a Smad-binding element in the 5' promoter of vimentin responsible for TGFß1-induced transcription. Notably, TGFß1 induces vimentin protein expression in AECs, which is associated with a 2.5-fold increase in cell motility, resulting in increased rates of migration and wound closure. These effects are independent of cell proliferation. TGFß1-mediated vimentin protein expression, cell migration, and wound closure are prevented by a pharmacological inhibitor of the Smad pathway and by expression of Ad-shRNA against vimentin. Conversely, overexpression of mEmerald-vimentin is sufficient for increased cell-migration and wound-closure rates. These results demonstrate that vimentin is required and sufficient for increased wound repair in an in vitro model of lung injury.


Asunto(s)
Vimentina/fisiología , Cicatrización de Heridas/fisiología , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Masculino , Alveolos Pulmonares/citología , Ratas , Proteínas Smad/fisiología , Factor de Crecimiento Transformador beta1/fisiología , Vimentina/biosíntesis
11.
Mol Biol Cell ; 20(11): 2755-65, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19357195

RESUMEN

Keratin intermediate filaments (KIFs) form a fibrous polymer network that helps epithelial cells withstand external mechanical forces. Recently, we established a correlation between the structure of the KIF network and its local mechanical properties in alveolar epithelial cells. Shear stress applied across the cell surface resulted in the structural remodeling of KIF and a substantial increase in the elastic modulus of the network. This study examines the mechanosignaling that regulates the structural remodeling of the KIF network. We report that the shear stress-mediated remodeling of the KIF network is facilitated by a twofold increase in the dynamic exchange rate of KIF subunits, which is regulated in a PKC zeta and 14-3-3-dependent manner. PKC zeta phosphorylates K18pSer33, and this is required for the structural reorganization because the KIF network in A549 cells transfected with a dominant negative PKC zeta, or expressing the K18Ser33Ala mutation, is unchanged. Blocking the shear stress-mediated reorganization results in reduced cellular viability and increased apoptotic levels. These data suggest that shear stress mediates the phosphorylation of K18pSer33, which is required for the reorganization of the KIF network, resulting in changes in mechanical properties of the cell that help maintain the integrity of alveolar epithelial cells.


Asunto(s)
Filamentos Intermedios/metabolismo , Queratinas/metabolismo , Proteína Quinasa C/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sustitución de Aminoácidos , Ciclo Celular , Línea Celular Tumoral , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Filamentos Intermedios/genética , Queratina-18/genética , Queratina-18/metabolismo , Queratinas/genética , Microscopía Confocal , Mutación , Fosforilación , Unión Proteica , Serina/genética , Serina/metabolismo , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...